
PizzaLang: A Language for Hungry Developers

Ronik Bhaskar
The University of Chicago

Dawson Ren
Northwestern University

Abstract

Modern programming languages lack a clear focus
on feeding their hungry programmers. As a first
step, we introduce the PizzaLang programming
language. With a straightforward type system,
easy-to-read concrete syntax, and extensive fea-
tures, PizzaLang outperforms state-of-the-art pizza
programming languages. We rigorously prove pow-
erful properties about PizzaLang, including strong
normalization. Our implementation of a PizzaLang
interpreter provides tangible results, demonstrat-
ing the effectiveness of this language.

1 Introduction

It’s 11pm. You’ve been programming all day, and
you forgot to eat dinner. With the project deadline
approaching, it’s not like you had time. You can’t
keep working on an empty stomach, but you can’t
step away from the keyboard either.

Pull yourself together. You’re a programmer.
You’re a professional problem solver. You can get
some food and keep writing code at the same time.
All you need are the right tools.

Currently, these tools are APIs wrapped
in APIs wrapped in dynamically-typed, object-
oriented languages that don’t care about your
pizza. While they serve the necessary purpose, the
sheer level of overhead makes actual use much more
difficult than anticipated. Developers are stuck
reading through pages of documentation, only to
realize the pizza shop has closed, and their dinner
plans will never be realized.

PizzaLang aims to provide better tools to hun-
gry programmers. The language has one main pur-
pose: constructing pizzas. Using clean structure,
straightforward typing, and simple grammar, Piz-
zaLang allows users to construct terms suitable for
any pizza-related project, including ordering pizza.

2 Term Grammar

The term grammar of PizzaLang is as follows:

t ::= bp base pizza

| left left half of pizza

| right right half of pizza

| all whole pizza

| mushrooms

| onions
| green peppers

| ... pizza toppings

| add t t t add topping

| remove t t remove topping

This allows for the construction of the follow-
ing values. All values are specified by v, following
the style of Types and Programming Languages [1].
Pizza values are denoted by pv, topping values are
denoted by tv, and location values are denoted by
lv.

v ::= pv pizza values

| tv topping values

| lv location values

tv ::= mushrooms | onions | green peppers | ...

lv ::= left

| right
| all

pv ::= bp

| add pv tv lv

Finally, this language has three types: Pizza,
Topping, and Location.

T ::= Pizza | Topping | Location

3 Evaluation Rules

The add and remove terms in PizzaLang function
similarly to successor and predecessor respectively
in Peano Arithmetic. The base pizza behaves like
zero. The predecessor of zero is still zero, so remov-
ing a topping from a plain pizza results in a plain
pizza. Wrapping add terms around a base pizza
creates a larger pizza.

Unlike Peano Arithmetic, not all adds and re-
moves are created equal. A remove around an add
will only cause the two to cancel if they describe
the same topping. Logically, removing mushrooms
shouldn’t also cause the green peppers to be re-
moved from your pizza. Since adds can be nested,
the remove term can descend through the adds,
searching for the correct topping to remove.

Computation Rules

v2 = v4
remove (add v1 v2 v3) v4 → v1

v2 ̸= v4
remove (add v1 v2 v3) v4 → add (remove v1 v4) v2 v3

remove bp t2 → bp

Congruence Rules

t1 → t′1
add t1 t2 t3 → add t′1 t2 t3

t2 → t′2
add v1 t2 t3 → add v1 t′2 t3

t3 → t′3
add v1 v2 t3 → add v1 v2 t′3

t1 → t′1
remove t1 t2 → remove t′1 t2

t2 → t′2
remove v1 t2 → remove v1 t′2

4 Type Rules

Since PizzaLang does not utilize variables, Pizza-
Lang does not require a context Γ to store the types
of variables. Instead, toppings are specified as fixed
set of terms in the grammar, allowing independent
developers to determine whether or not ”pineap-
ple” is valid syntax. Also, depending on the im-
plementation of the interpreter/compiler, ”mush-
rooms” is a well-typed program.

bp : Pizza

left : Location

right : Location

all : Location

topping name : Topping

t1 : Pizza t2 : Topping t3 : Location

add t1 t2 t3 : Pizza

t1 : Pizza t2 : Topping

remove t1 t2 : Pizza

Given our type system, you may have noticed
that the second, third, and fifth congruence rules
are redundant, since terms of type Location or Top-
ping are already values. These congruence rules
future-proof the language for new terms of type
Location or Topping that step to a value in one or
more steps.

5 Strong Normalization

We claim that our language has strong normaliza-
tion [1]. If a term in PizzaLang is well-typed, then
it steps to a value in zero or more steps. The proof
is by induction over the depth of the term. See Ap-
pendix A for the full, mechanized proof.

For far too long, Big Pizza has upheld too
many barriers to getting your pizza. Pop-ups, redi-
rects, ads, and confusing choices continue to plague
the modern pizza consumer. As independent re-
searchers, we hope to introduce robust systems for
ordering pizza. This begins with the strong guar-
antee that your pizza order can produce a pizza.

Pizza-ordering languages that lack strong nor-
malization risk infinite pizza loops, introducing
topological paradoxes about how to apply sauce to
a Möbius Pizza.

6 Concrete Syntax

The initial interpreter, written in Typed Racket,
replicates a spoken-English pizza order with its syn-
tax. It only specifies three different toppings, and
they must be spelled as described. Furthermore,
all programs must begin with ”i’d like uh...” and
end with ”don’t forget to bake it”. We feel the
first syntax requirement adds to the programming
experience, mimicking common speech patterns for
ordering food. The second requirement is entirely
to annoy programmers who forget to add it.

t ::= ”i’d like uh...”

t main body

”don’t forget to bake it”

| ”pizza” base pizza

| t ”with” t ”on the” t add topping

| t ”and” t ”on the” t add topping

| t ”actually hold the” t remove topping

| t ”and” t remove topping

| ”left half” location

| ”right half” location

| ”whole thing” location

| ”mushrooms”

| ”onions”
| ”green peppers”

Here is an example program:

i’d like uh...

pizza with mushrooms on the left half

and green peppers on the right half

and onions on the whole thing

actually

hold the onions and mushrooms

don’t forget to bake it

The program evaluates to the following term:

add bp "green peppers" right

7 Further Applications

The most important values in the program are
those of type Pizza. They can be read as a se-
ries of instructions, describing which toppings to
add to a base pizza, in what order, and where on
the pizza. To allow for further computations, an

interpreter could use the sequence of toppings as
computational instructions. For example, you may
read the location of the topping as a left/right/stay
move on a Turing tape, and the topping itself may
tell you how to manipulate that square. Alterna-
tively, you could feed the instructions to a program
that draws pizzas.

Beyond computation, PizzaLang creates a
context-free grammar for ordering pizza. Pizza de-
livery APIs have existed for years. Individual users
can define what a base pizza means to them, and
most pizza-delivery restaurants take orders as se-
quences of toppings to put on a pizza. The instruc-
tions may need to be adapted to fit the nuance of
each pizza restaurant, but the logic is still clear.

Programmers of the world, open your editors.
Let your stomachs be your guide. Write some code,
and order some pizza.

References

[1] Benjamin C. Pierce. Types and Programming
Languages. The MIT Press, Cambridge, Mass.,
2002.

Special thanks to Adam Shaw and Vincent St-
Amour.

We acknowledge that this paper does not neces-
sarily reflect the beliefs and ideas of our respective
universities. We also acknowledge that the the ri-
valry between the universities is silly because one
is clearly better than the other.

A Appendix

We claim PizzaLang has strong normalization. The following mechanized proof is written in Agda.

module pizza-lang-strong-normalization-proof where

open import PizzaLang.Theorems using (strong-norm-proof; WellTyped; steps-to-val)

open import PizzaLang.Theorems using (pizza-lang)

pl-strong-norm : Set

pl-strong-norm = ∀(x : WellTyped) → (steps-to-val x)

pl-strong-norm-proof : ∀(x : WellTyped) → (steps-to-val x)

pl-strong-norm-proof = (strong-norm-proof pizza-lang)

	Introduction
	Term Grammar
	Evaluation Rules
	Type Rules
	Strong Normalization
	Concrete Syntax
	Further Applications

